Sapto Condro loves Science and Technology

Catatan seorang pelajar yang tertidur…

Menghitung jumlah sampel

Akhir-akhir ini, di dunia maya Indonesia terdapat perbincangan mengenai quick count dan ukuran sampel yang dipakai. Hasil quick count dari lembaga penelitian yang berbeda menunjukkan persentase berbeda. Ada lembaga membuka metodologi yang digunakan dan dapat diunduh di website mereka, contoh Saiful Mujani Research Center. Beberapa tidak menunjukkan metodologinya kepada publik.

Tulisan kali ini ingin menulis tentang bagaimana cara menentukan ukuran sampel. Ada beberapa rumus matematika yang bisa dipakai untuk mengukur sampel. Aku ingin menuliskan dua rumus yang lagi hangat di media sosial dan satu rumus dari kuliah “Multivariate Statistic” yang sedang kujalani.

***

Rumus Pertama:

n = \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2}{{\Delta}^2}

Penjelasan:

n = jumlah sampel atau ukuran sampel (sample size)

Z_{\alpha \mid 2} = angka pada distribusi normal yang memotong bagian atas (upper tail) pada probabilitas \alpha \mid 2.
Angka \pm Z_{\alpha \mid 2} biasa disebut selang kepercayaan (confidence interval).
Pada tingkat kepercayaan 95%, \alpha = 0.05, Z_{\alpha \mid 2} =  1,96.
Pada tingkat kepercayaan 99%, \alpha = 0.01, Z_{\alpha \mid 2} = 2,58.

\sigma = simpangan baku (standard deviation).
Berhubung adanya asumsi bahwa proses pada quick count itu hanya tentang memilih calon X atau tidak memilih calon X, simpangan baku maksimum adalah 0,5. Ini sesuai Bernoulli Process dan Binomial Distribution.

\Delta = galat (error). Sedangkan “margin of error” itu \pm \Delta.

Rumus di atas adalah penurunan dari rumus menghitung margin of error, tanpa Finite Error Correction (FEC):

\Delta = Z_{\alpha \mid 2} \cdot \frac{\sigma}{\sqrt{n}}

Contoh 1.1:

Kita menginginkan quick count yang memiliki tingkat kepercayaan 95% (\alpha = 0.05) dan margin of error 1%. Berapakah sampel yang harus diambil?

Z_{\alpha \mid 2} = 1,96

\sigma = 0,5 (sesuai asumsi Bernoulli Process)

n = \frac{1,96^2 0.5^2}{0.01^2} = 9604

Jadi sampel yang harus diambil ada 9604.

Contoh 1.2:

Bagaimana kalau tingkat kepercayaan yang diinginkan 99% dan margin of error sama?

Dengan rumus yang sama, diperoleh ukuran sampel n = 16641.

Rumus pertama di atas untuk menghitung jumlah sampel bisa dibaca di posting berikut

Asumsi pada rumus pertama adalah galat yang diperhitungkan adalah hanya type I error (wiki: en,de), yang berhubungan dengan tingkat dan selang kepercayaan. Berhubung survei tidak memiliki variabel kontrol yang bisa dijadikan hipotesis nol, type II error (wiki: de) tidak bisa dihitung dan power analysis tidak bisa dilakukan (wiki: en,de).

***

Rumus Kedua:

n = \frac{Z_{\alpha \mid 2}^2 \cdot p(1-p) \cdot N}{Z_{\alpha \mid 2}^2 \cdot p(1-p) + (N-1) \cdot {\Delta}^2} = \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2 \cdot N}{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2 + (N-1) \cdot {\Delta}^2}

Penjelasan:

n = jumlah sampel atau ukuran sampel (sample size)

N = jumlah populasi atau ukuran populasi (population size)

Z_{\alpha \mid 2} = angka pada distribusi normal yang memotong bagian atas (upper tail) pada probabilitas \alpha \mid 2.

\sigma =  simpangan baku (standard deviation).

p(1-p) = {\sigma}^2 =  variance, sesuai asumsi Binomial Distribution atau Bernoulli Process.
Entropi maksimum tercapai ketika p = 0,5. Jadi margin of error yang paling besar tercapai ketika p = 0,5, jadi asumsikan begitu, sehingga \sigma = 0,5.

\Delta = galat atau error.

Rumus di atas adalah penurunan dari rumus menghitung margin of error, dengan Finite Error Correction (FEC):

\Delta = \sqrt{\frac{N-n}{N-1}} \cdot Z_{\alpha \mid 2} \cdot \frac{\sigma}{\sqrt{n}}

FEC = \sqrt{\frac{N-n}{N-1}}

Contoh 2.1:

Kita menginginkan quick count yang memiliki tingkat kepercayaan 95% (\alpha = 0,05) dengan margin of error 1%. Berapa besar ukuran sampel yang dibutuhkan ketika populasi 186.612.255 orang?

Z_{\alpha \mid 2} = 1,96

N = 186.612.255

\Delta = 0,01

p(1-p) = {\sigma}^2 = 0,5^2 = 0,25

n = \frac{1,96^2 \cdot 0,25 \cdot 186812255}{1,96^2 \cdot 0,25 + (186612255 - 1) \cdot 0,01^2} \approx 9603,5 \approx 9604

Ternyata hasil rumus kedua mirip dengan rumus pertama, yaitu ukuran sampelnya 9604.

Contoh 2.2:

Bagaimana kalau populasi penduduk hanya 1 juta orang?

N = 1.000.000

n = \frac{1,96^2 \cdot 0,25 \cdot 1000000}{1,96^2 \cdot 0,25 + (1000000 - 1) \cdot 0,01^2} \approx 9512,65 \approx 9513

Ukuran sampel menjadi 9513.

Jadi dengan koreksi galat populasi berhingga (finite error correction), kita tidak perlu mengambil 9604 sampel, tetapi cukup 9513 sampel saja. Bedanya dikit banget, yah?

Rumus kedua di atas untuk menghitung jumlah sampel bisa dibaca di posting berikut

Asumsi yang dipakai pada rumus kedua dan pertama itu sama, yaitu hanya memperhitungkan type I error tetapi tidak memasukkan type II error.

***

Hubungan antara rumus pertama dan kedua

Rumus kedua jika diturunkan lebih lanjut akan menjadi

n = \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2}{{\Delta}^2 + \left( \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2 - {\Delta}^2}{N} \right) }

Dan bisa dibandingkan dengan rumus pertama

n = \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2}{{\Delta}^2}

Terlihatlah bahwa finite error correction (FEC), menimbulkan efek \left( \frac{Z_{\alpha \mid 2}^2 \cdot {\sigma}^2 - {\Delta}^2}{N} \right) yang kecil, untuk N yang besar.

Jadi sesuai prinsip parsimoni atau Occam’s Razor, pilih rumus pertama yang lebih sederhana. Jumlah sampel menggunakan rumus kedua tidak jauh berbeda dengan rumus pertama.

***

Rumus Ketiga:

n = \frac{2 \left( Z_{\alpha \mid 2} + Z_{\beta} \right)^2 \cdot {\sigma}^2}{{\Delta}^2}

Penjelasan:

n = jumlah sampel atau ukuran sampel (sample size).

Z_{\alpha \mid 2} = nilai pada distribusi normal yang memotong bagian atas (upper tail)  pada probabilitas \alpha \mid 2, seperti yang telah dicontohkan pada rumus pertama.

Z_{\beta} = nilai pada distribusi normal yang memotong bagian atas pada probabilitas \beta.
Pada statistical power sebesar 0,90, nilai \beta = 0,10 dan Z_{\beta} = 1,28.

\sigma = simpangan baku (standard deviation).
Diasumsikan sebesar 0,5.

\Delta = galat (error).

Contoh 3.1:

Pimpinan suatu parpol menargetkan Pemilu ini akan mendapat 27%. Diinginkan suatu survei dengan margin of error 1% dan tingkat kepercayaan 95% serta power sebesar 90%. Berapa ukuran sampel yang dibutuhkan?

Z_{\alpha \mid 2} = 1,96
untuk tingkat kepercayaan 95%, yaitu \alpha = 0.05

Z_{\beta} = 1,28
untuk power 90%, yaitu \beta = 0,10

{\sigma}^2 = p \cdot (1 - p) = 0,27 \cdot (1 -0,27) = 0,1971 < 0,25
\sigma \approx 0,444 < 0,5
\sigma = 0,5 , jika menggunakan asumsi simpangan baku maksimum pada proses Bernoulli atau distribusi Binomial.

\Delta = 0,01

Jika tidak menggunakan asumsi simpangan baku 0,5, maka menghitung ukuran sampel sebagai berikut.
n = \frac{2 \left( 1,96 + 1,28 \right)^2 \cdot 0,1971}{0,01^2} \approx 41381,54 \approx 41382

Jika menggunakan asumsi simpangan baku 0,5, maka ukuran sampel dihitung sebagai berikut.
n = \frac{2 \left( 1,96 + 1,28 \right)^2 \cdot 0,5^2}{0,01^2} = 52488

Jadi untuk memperkirakan apakah target pimpinan parpol tersebut itu akan tercapai atau tidak, dibutuhkan suatu survei dengan ukuran sampel sebesar 41.382 atau 52.488, tergantung asumsi.

Pada rumus pertama dan kedua, ukuran sampel yang dibutuhkan tidak lebih dari 9604, sedangkan pada rumus ketiga, ukuran sampel mencapai 50 ribu. Ini menunjukkan bahwa memasukkan power analysis atau type II error ke dalam perhitungan, bisa menyebabkan ukuran sampel membesar. Sesuai prinsip parsimoni atau Occam’s Razor, pilihlah metode dengan asumsi yang paling ringkas dan sederhana. Jadi rumus pertama saja yang sebaiknya dipakai dalam survei politik dan hitung cepat dalam pemilu, juga dengan asumsi simpangan baku maksimum 0,5. Ini juga sudah dipakai dalam quick count dan survei politik yang dilakukan oleh National Democratic Institute (NDI) di berbagai negara.

Rumus ketiga ini bisa dibaca dari buku berikut

  • Brian S. Everitt, 2010, Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences. Chapter 1, pp 15. CRC Press, Taylor & Francis Group. ISBN 978-1-4398-0769-9

 

***

Jadi setelah membaca penjelasan tiga rumus untuk menghitung ukuran sampel dalam survei politik maupun exit polls dan hitung cepat (quick count) pemilu, kita bisa belajar mengetahui apakah kata-kata seorang politisi itu sekedar basa-basi politik atau memiliki argumen ilmiah yang valid. Dengan matematika, terutama ilmu probabilitas dan statistika, kita bisa memperkirakan kondisi sosial politik suatu masyarakat. Hal ini bisa membantu politisi dalam menyusun langkah strategis selanjutnya dalam berpolitik. Karena politik itu tidak hanya basa-basi. Hal ini juga bisa membantu masyarakat awam untuk lekas tahu kira-kira seperti apa hasil pemilu, pilpres atau pilkada. Jadi rakyat tahu akan menghadapi pemimpin seperti apa selama sekian tahun ke depan.

Dalam politik, bukan hanya persamaan matematika yang berlaku. Jadinya belajar survei politik itu bukan hanya rumus matematika, namun juga dampak politik yang terjadi pada elit maupun bagi rakyat kebanyakan. Posting ini hanya menjelaskan matematika di balik quick count dan survei sosial politik sejenisnya. Jadi ada kemungkinan “mathematically correct, but politically incorrect”. Jika tersinggung dengan tulisan ini, salahkan matematikawan yang bikin rumus di atas.

Bremen, 26 Agustus 2014

iscab.saptocondro

P.S. Tulisan ini seharusnya selesai di Oldenburg tanggal 14 Juli 2014, tapi karena aku menunda-nunda jadinya baru selesai hari ini.

Advertisements

August 26, 2014 Posted by | probabiliscab, Uncategorized | , , | 1 Comment

Hello world!

This is my first post. I want to try some LaTeX in WordPress.

\int\frac{d(tong)}{(tong)} =\ ln(tong)

Ini pos pertama. Saatnya mencoba LaTeX di WordPress.

November 9, 2009 Posted by | Uncategorized | 1 Comment